experiment: name: "progressive_reasoning_8gpu" base_model: "google/gemma-2-2b-it" # Can scale up to larger models output_dir: "./outputs" use_wandb: true wandb_project: "matsuo-llm-comp-2025" model: load_in_4bit: false # Can use FP16/BF16 with multiple GPUs bnb_4bit_compute_dtype: "bfloat16" bnb_4bit_use_double_quant: true device_map: "balanced" # Distribute across all GPUs gradient_checkpointing: true use_flash_attention_2: true # Enable if available for speed use_eager_attention: false # Multi-GPU specific settings distributed: strategy: "ddp" # Distributed Data Parallel find_unused_parameters: false gradient_as_bucket_view: true progressive_stages: - name: "basic_cot" description: "Basic Chain-of-Thought reasoning" dataset_path: "./data/basic_cot/" adapter_config: r: 32 # Larger rank since we have more memory lora_alpha: 64 lora_dropout: 0.1 target_modules: ["q_proj", "k_proj", "v_proj", "o_proj"] init_lora_weights: true training: num_epochs: 2 per_device_batch_size: 16 # Large batch size per GPU gradient_accumulation_steps: 1 # No need for accumulation with 8 GPUs learning_rate: 5e-4 warmup_steps: 100 max_length: 2048 bf16: true max_grad_norm: 1.0 weight_decay: 0.001 save_steps: 50 logging_steps: 10 dataloader_num_workers: 4 # More workers for data loading dataloader_pin_memory: true remove_unused_columns: false - name: "math_reasoning" description: "Mathematical reasoning with OpenR1-Math-220k dataset" dataset_path: "open-r1/OpenR1-Math-220k" inherit_from: "basic_cot" adapter_config: r: 64 lora_alpha: 128 lora_dropout: 0.1 target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] init_lora_weights: true training: num_epochs: 1 per_device_batch_size: 8 # Reduce for larger model gradient_accumulation_steps: 2 learning_rate: 3e-4 warmup_steps: 200 max_length: 4096 bf16: true max_grad_norm: 1.0 weight_decay: 0.001 save_steps: 100 logging_steps: 20 dataloader_num_workers: 4 dataset_config: streaming: true max_samples: 100000 # Can process more with 8 GPUs split: "train" - name: "complex_reasoning" description: "Complex multi-step reasoning with Mixture-of-Thoughts" dataset_path: "open-r1/Mixture-of-Thoughts" inherit_from: "math_reasoning" adapter_config: r: 128 # Maximum rank with multi-GPU lora_alpha: 256 lora_dropout: 0.1 target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] init_lora_weights: true training: num_epochs: 1 per_device_batch_size: 4 gradient_accumulation_steps: 4 learning_rate: 2e-4 warmup_steps: 300 max_length: 8192 bf16: true max_grad_norm: 1.0 weight_decay: 0.001 save_steps: 200 logging_steps: 50 dataloader_num_workers: 4 dataset_config: streaming: true max_samples: 50000 split: "train" evaluation: benchmarks: - "HLE" - "Do-Not-Answer" save_results: true results_dir: "./outputs/evaluation_results"