experiment: name: "progressive_reasoning_gemma3_1b" base_model: "google/gemma-3-1b-pt" # Using Gemma 2 2B (1B might not be available) output_dir: "./outputs" use_wandb: true wandb_project: "matsuo-llm-comp-2025" model: load_in_4bit: false bnb_4bit_compute_dtype: "bfloat16" bnb_4bit_use_double_quant: true device_map: "auto" gradient_checkpointing: false # Not needed for small models use_flash_attention_2: false use_eager_attention: true progressive_stages: - name: "basic_cot" description: "Basic Chain-of-Thought reasoning" dataset_path: "./data/basic_cot/" adapter_config: r: 8 lora_alpha: 16 lora_dropout: 0.1 target_modules: ["q_proj", "k_proj", "v_proj", "o_proj"] # Gemma attention modules init_lora_weights: true training: num_epochs: 2 per_device_batch_size: 8 gradient_accumulation_steps: 2 learning_rate: 5e-4 warmup_steps: 50 max_length: 1024 fp16: false bf16: true max_grad_norm: 1.0 weight_decay: 0.001 save_steps: 100 logging_steps: 10 - name: "math_reasoning" description: "Mathematical reasoning with OpenR1-Math-220k dataset" dataset_path: "open-r1/OpenR1-Math-220k" # HuggingFace dataset inherit_from: "basic_cot" adapter_config: r: 16 lora_alpha: 32 lora_dropout: 0.1 target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] init_lora_weights: true training: num_epochs: 1 # Large dataset, fewer epochs per_device_batch_size: 4 gradient_accumulation_steps: 4 learning_rate: 3e-4 warmup_steps: 100 max_length: 2048 bf16: true max_grad_norm: 1.0 weight_decay: 0.001 save_steps: 1000 logging_steps: 100 dataset_config: # OpenR1-Math-220k specific settings streaming: true # Use streaming for large dataset max_samples: 200000 # Limit samples for faster training split: "train" - name: "complex_reasoning" description: "Complex multi-step reasoning with Mixture-of-Thoughts" dataset_path: "open-r1/Mixture-of-Thoughts" # HuggingFace dataset inherit_from: "math_reasoning" adapter_config: r: 32 lora_alpha: 64 lora_dropout: 0.1 target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] init_lora_weights: true training: num_epochs: 1 # Large dataset, fewer epochs per_device_batch_size: 2 gradient_accumulation_steps: 8 learning_rate: 2e-4 warmup_steps: 200 max_length: 4096 bf16: true max_grad_norm: 1.0 weight_decay: 0.001 save_steps: 500 logging_steps: 50 dataset_config: # Mixture-of-Thoughts specific settings streaming: true # Use streaming for large dataset max_samples: 30000 # Limit samples for faster training split: "train" evaluation: benchmarks: - "HLE" - "Do-Not-Answer" save_results: true results_dir: "./outputs/evaluation_results"